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The resilience of infectious disease

1967: It’s time to close the
book on infectious diseases



Pathogen evolution



Human heterogeneity



Human heterogeneity



Human heterogeneity



Outline

Homogeneous disease models

The importance of heterogeneity

Effects of heterogeneity

Modeling approaches



Homogeneous disease models

I Homogeneous models assume everyone has the same:
I disease characteristics (e.g. susceptibility, tendency to

transmit)
I mixing rate
I probability of mixing with each person



Homogeneous disease models

I Homogeneous models assume everyone has the same:

I disease characteristics (e.g. susceptibility, tendency to
transmit)

I mixing rate
I probability of mixing with each person



Homogeneous disease models

I Homogeneous models assume everyone has the same:
I disease characteristics (e.g. susceptibility, tendency to

transmit)

I mixing rate
I probability of mixing with each person



Homogeneous disease models

I Homogeneous models assume everyone has the same:
I disease characteristics (e.g. susceptibility, tendency to

transmit)
I mixing rate

I probability of mixing with each person



Homogeneous disease models

I Homogeneous models assume everyone has the same:
I disease characteristics (e.g. susceptibility, tendency to

transmit)
I mixing rate
I probability of mixing with each person



The basic reproductive number

I R0 is the number of people who would be infected by an
infectious individual in a fully susceptible population.

I R0 = β/γ = βD = (cp)D
I c: Contact Rate
I p: Probability of transmission (infectivity)
I D: Average duration of infection

I A disease can invade a population if and only if R0 > 1.
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Equilibrium analysis

I Reff is the number of people who would be infected by an
infectious individual in a general population.

I Reff = R0
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I Proportion ‘affected’ is V = 1− S/N = 1− 1/R0.
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Proportion affected and disease prevalence

I For diseases with no recovery, V is the disease prevalence
I For other diseases, the equilibrium value of P = I/N will be

equal to V times the ratio of time spent sick to the time
spent immune.

I Example: measles before vaccination
I V = 0.95
I P̄ = 0.95× (2wk/60yr).
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Heterogeneity in other diseases
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I Imagine a disease spread by people who differ only in their
effective mixing rates

I If the disease has just started spreading in the population,
how do cS and cI compare to c̄?

I cS ≈ c̄; cI > c̄.
I If the disease is very widespread in the population?

I cS < c̄; cI → c̄.
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