### Model evaluation

#### Jonathan Dushoff, McMaster University

http://lalashan.mcmaster.ca/DushoffLab

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### MMED 2016

http://www.ici3d.org/mmed/

# Do I have a good model?

#### What is my model trying to accomplish?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Generating hypotheses
- Evaluating plausibility
- Prediction
- Extrapolation
- Mechanistic understanding

# Statistical philosophy



# OBEY THE Kitties

<ロ> (四) (四) (三) (三) (三) (三)

# Outline

#### Conceptual models

#### Prediction

**Model Validation** 

#### Model Evaluation

Goodness of fit Capturing patterns Going beyond

#### Conclusion

▲□▶▲□▶▲□▶▲□▶ = のへで

# **Disease thresholds**

endemic equilibrium



# Effects of clinical immunity



# **Bistability**



くして 前 ふかく ボット 間 くらう

# Outline

Conceptual models

#### Prediction

**Model Validation** 

#### Model Evaluation

Goodness of fit Capturing patterns Going beyond

Conclusion

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

# Ptolemy v. Copernicus



# Ptolemy v. Copernicus



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

### What causes cholera?



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

### What causes cholera?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

# Outline

Conceptual models

#### Prediction

#### **Model Validation**

#### Model Evaluation

Goodness of fit Capturing patterns Going beyond

Conclusion



# **Model Validation**

Does your fitting algorithm match your model world?



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Coverage
- Precision
- Bias?
- Accuracy?

# Coverage

If you use your fitting algorithm on simulations from your model world, then you know the right answer!



- The right answer should be inside your 95% confidence interval 95% of the time
  - If more, your model is too conservative
  - If less, your model is invalid

# Precision

 You should aim to make your confidence intervals as narrow as possible

(ロ) (同) (三) (三) (三) (○) (○)

- Provide as much information as possible
- As data increases, your precision should increase
  - Cls should approach zero width

# **Bias**?

- Nobody wants to be biased
- You need to be asymptotically unbiased
  - Good coverage and good precision assure this
- Not so clear you need to be *absolutely* unbiased
  - Bias is the difference between the *mean* expected prediction and the true value
  - Scale dependent: an unbiased estimate of *γ* is automatically a biased estimate of *D* (but not asymptotically biased)

(日) (日) (日) (日) (日) (日) (日)

Maybe the median would be a better measure

# Accuracy?

- Nobody wants to be inaccurate
- Good coverage and good precision should guarantee good accuracy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Outline

Conceptual models

Prediction

**Model Validation** 

#### Model Evaluation

Goodness of fit Capturing patterns Going beyond

Conclusion

・ロト・日本・日本・日本・日本・日本

### **Model Evaluation**

Does your model match the real world?



# Outline

Conceptual models

Prediction

**Model Validation** 

#### Model Evaluation

Goodness of fit Capturing patterns Going beyond

Conclusion

・ロト・日本・日本・日本・日本・日本

# Goodness of fit

- Goodness of fit statistics describe how well a model prediction matches observed data
- Goodness of fit tests attempt to determine whehter the observed difference between model and data is statistically significant

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Your model is false!

- A goodness of fit test won't make it true
- You can "pass" a goodness of fit test by:
  - having a good model
  - having bad data
  - choosing an inappropriate way to compare
- So why do we use P values at all in biology?



# Vitamin study



# Low P values



# High P values



# Goodness of fit test

- Your model is not reality (null hypothesis is false)
- Can we see the difference clearly?
  - If no, model may be good or bad.
    - We probably can't add any more complexity based on current data
  - If yes, model may be good or bad. We may be able to add more complexity based on current data

(ロ) (同) (三) (三) (三) (○) (○)

But we may not need to

# Outline

Conceptual models

Prediction

**Model Validation** 

#### Model Evaluation

Goodness of fit Capturing patterns Going beyond

Conclusion

・ロト・日本・日本・日本・日本・日本

# Capturing patterns

- You can ask:
  - Does your model do a reasonable job of capturing the data?
    - You can use a goodness of fit statistic for this, and not worry about the P value

(ロ) (同) (三) (三) (三) (○) (○)

Does your model capture patterns and relationships that you (or other experts) think are important?

# Outline

Conceptual models

Prediction

**Model Validation** 

#### Model Evaluation

Goodness of fit Capturing patterns Going beyond

Conclusion

・ロト・日本・日本・日本・日本・日本

# Out-of-sample validation

- Does your model make predictions *outside* the range on which you calibrated it?
  - Predicting gravitational shifts in star positions from measurements in Earth laboratories
  - Predicting cholera outbreaks in Bangladesh from a model calibrated to Haiti

(ロ) (同) (三) (三) (三) (○) (○)

 Predicting influenza patterns in 2010 from a model calibrated from 2000–2009

### Test sets

- What is test set spelled backwards?
- Hold some data out while fitting your model
- Or just pretend to do this as an evaluation method
  - In other words, test what would happen under various withholding scenarios

(ロ) (同) (三) (三) (三) (○) (○)

# Other model worlds

- The model you're *fitting* is probably pretty simple
- But you can *simulate* very complicated models, indeed



How well can you do? Which details are important?

# Other model worlds



Week

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

# Other model worlds



Week

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Generating hypotheses



# Generating hypotheses



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

# Testing hypotheses



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

# Testing hypotheses



◆□▶★@▶★≧▶★≧▶ ≧ のQで

# Testing hypotheses



# Hard questions



# Outline

Conceptual models

#### Prediction

**Model Validation** 

#### Model Evaluation

Goodness of fit Capturing patterns Going beyond

#### Conclusion

<ロ> < 団> < 団> < 豆> < 豆> < 豆</p>

# Dynamic models can help:

- Think clearly
- Understand outcomes
- Predict outcomes
- Find new mechanisms

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# **Evaluation**

- Validation (inside your model world)
- Inspection (compare patterns)
- Prediction (and other out-of-sample comparison)

(ロ) (同) (三) (三) (三) (○) (○)

Generate and test hypotheses

# Conclusion



Essentially, all models are wrong, but some are useful. – Box and Draper (1987), *Empirical Model Building* ....