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Do I have a good model?

I What is my model trying to accomplish?
I Generating hypotheses
I Evaluating plausibility
I Prediction
I Extrapolation
I Mechanistic understanding



Statistical philosophy
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Disease thresholds



Effects of clinical immunity



Bistability
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Ptolemy v. Copernicus



Ptolemy v. Copernicus



What causes cholera?



What causes cholera?
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Model Validation

I Does your fitting algorithm match your model world?

I Coverage
I Precision
I Bias?
I Accuracy?



Coverage
I If you use your fitting algorithm on simulations from your

model world, then you know the right answer!

I The right answer should be inside your 95% confidence
interval 95% of the time

I If more, your model is too conservative
I If less, your model is invalid



Precision

I You should aim to make your confidence intervals as
narrow as possible

I Provide as much information as possible
I As data increases, your precision should increase

I CIs should approach zero width



Bias?

I Nobody wants to be biased
I You need to be asymptotically unbiased

I Good coverage and good precision assure this
I Not so clear you need to be absolutely unbiased

I Bias is the difference between the mean expected
prediction and the true value

I Scale dependent: an unbiased estimate of γ is
automatically a biased estimate of D (but not asymptotically
biased)

I Maybe the median would be a better measure



Accuracy?

I Nobody wants to be inaccurate
I Good coverage and good precision should guarantee good

accuracy
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Model Evaluation

I Does your model match the real world?
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Goodness of fit

I Goodness of fit statistics describe how well a model
prediction matches observed data

I Goodness of fit tests attempt to determine whehter the
observed difference between model and data is statistically
significant



Your model is false!

I A goodness of fit test
won’t make it true

I You can “pass” a
goodness of fit test by:

I having a good model
I having bad data
I choosing an

inappropriate way to
compare

I So why do we use P
values at all in biology?
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Low P values



High P values



Goodness of fit test

I Your model is not reality (null hypothesis is false)
I Can we see the difference clearly?

I If no, model may be good or bad.
I We probably can’t add any more complexity based on

current data
I If yes, model may be good or bad. We may be able to add

more complexity based on current data
I But we may not need to
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Capturing patterns

I You can ask:
I Does your model do a reasonable job of capturing the data?

I You can use a goodness of fit statistic for this, and not worry
about the P value

I Does your model capture patterns and relationships that
you (or other experts) think are important?
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Out-of-sample validation

I Does your model make predictions outside the range on
which you calibrated it?

I Predicting gravitational shifts in star positions from
measurements in Earth laboratories

I Predicting cholera outbreaks in Bangladesh from a model
calibrated to Haiti

I Predicting influenza patterns in 2010 from a model
calibrated from 2000–2009



Test sets

I What is test set spelled backwards?
I Hold some data out while fitting your model
I Or just pretend to do this as an evaluation method

I In other words, test what would happen under various
withholding scenarios



Other model worlds
I The model you’re fitting is probably pretty simple
I But you can simulate very complicated models, indeed

I How well can you do? Which details are important?



Other model worlds
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Other model worlds
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Generating hypotheses



Generating hypotheses



Testing hypotheses



Testing hypotheses



Testing hypotheses



Hard questions
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Dynamic models can help:

I Think clearly
I Understand outcomes
I Predict outcomes
I Find new mechanisms



Evaluation

I Validation (inside your model world)
I Inspection (compare patterns)
I Prediction (and other out-of-sample comparison)
I Generate and test hypotheses



Conclusion

Essentially, all models are wrong, but some are useful.
– Box and Draper (1987), Empirical Model Building . . .
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