Impact of resource abundance on pathogen invasion risk

MMED Faculty Research Presentation
African Institute for the Mathematical Sciences
Muizenberg, South Africa
1 June 2016

Rebecca Borchering, BS, MS

Department of Mathematics and Emerging Pathogens Institute

University of Florida

Image Credit: Bellan et al. 2012, Namibian Ministry of Environment & Tourism, Etosha Ecological Institute

Rabies risk

Credit: Rabies risk map, WHO.

Rabies reservoirs

Credit: Rabies risk map, WHO.

Role of jackals in rabies maintenance

- Lembo et al. 2008 found that domestic dogs are the only rabies maintenance population in the Serengeti.
- Rhodes et al. 1998 found rabies to be **sub-critical** for jackals in Zimbabwe.

We investigate conditions for rabies maintenance in jackals in Etosha National Park, Namibia.

Berkeley Etosha Anthrax Project

Image Credits: Bellan et al. 2012, lonelyplanet.com

Territorial jackals

Long movement data:

Data Credit: Bellan et al. 2012, Namibian Ministry of Environment & Tourism, Etosha Ecological Institute

Resource-driven encounters

Data Credit: Bellan et al. 2012, Namibian Ministry of Environment & Tourism, Etosha Ecological Institute

Steve Bellan's Question

Can anthrax "cause" rabies?

Concepts

Spillover introduction

Maintenance population

Target population

Pathogen invasion

Target population

Our challenge -

Develop a consumer-resource model for the target population and quantify its encounter rates.

Resource-driven encounters

Non-focal consumers and resources are distributed uniformly on a landscape as spatial Poisson processes with densities one consumer per unit area and \mathcal{K} resources per unit area.

Resource-driven encounters

Model assumptions

Spatial

 Random distribution of both the nonfocal consumers and resources

Consumers

- have a limited range of observation
- prefer to visit the nearest resource they observe
- respond to resources independently of other consumers
- are satiated after visiting a resource

Regions of attraction

kappa= 0.4

kappa= 1

kappa= 10

Voronoi diagram

"A partitioning of a plane into regions based on distance to points in a specific subset of the plane. That set of points is specified beforehand, and for each seed there is a corresponding region consisting of all points closer to that seed than to any other."

- focal consumer
- consumer
- resource

First result: non-monotonicity

Second result: detection distance matters

Simulations and predictions

Pathogen invasion

Maintenance population

Target population (N)

• Infectious (M)

Susceptible

lacktriangle Infectious (I)

Spillover events are modeled as a Poisson process with rate $\gamma M(N-I)$.

Successful pathogen invasion: when a spillover event produces a lineage which does not go extinct before reaching a quasi-stationary state.

SIS Model

b =expected number of infections due to a single individual in a large population per time

 $\nu = \text{disease-related mortality rate}$

$$I_* = N\left(1 - \frac{\nu}{b}\right)$$

Connecting back to rabies in Etosha jackals...

Jackal system

Parameter	Value	Meaning	Source
b		infection per week	Rhodes et al. 1998
ν	1.4	rabies related deaths per week	Rhodes et al. 1998
ho	1	jackal density	Rhodes et al. 1998

$$R_0 = \frac{b}{\nu} = \frac{1}{1.4} \approx 0.7$$
 (rabies is sub-critical)

$$p_{\inf}$$
 = prob. of infection \mathcal{E} = # resource-driven encounters

How does
$$\frac{b + p_{\inf} \cdot \mathcal{E}}{\nu}$$
 compare to $\frac{b}{\nu}$?

Rhodes et al. (1998) "Rabies in Zimbabwe: reservoir dogs and the implications for disease control." *Philosophical Transactions of the Royal Society B*.

Calculating a temporal reproduction number

Resource intensity

Resource intensity

of carcasses

 $\kappa =$

resource

Bellan, Steve E., et al. "A hierarchical distance sampling approach to estimating mortality rates from opportunistic carcass surveillance data." *Methods in Ecology and Evolution* 4.4 (2013): 361-369.

Resource intensity

of carcasses

 $\kappa =$

of jackals

consumer

of jackals

Resource intensity

defendable territories

family size

Detection distance

focal consumer

Time scale of reference

Data Credit: Bellan et al. 2012, Namibian Ministry of Environment & Tourism, Etosha Ecological Institute

Carcass visitation

Detection distance

Calculating a temporal reproduction number

$$\ell = 4$$

$$\ell = 10$$

Resource intensity

Calculating a temporal reproduction number

Adjust by the probability of infection given a resource-driven encounter (Pinf).

Temporal reproduction number

Temporal reproduction number

Implications for invasion

Future work

- Disease model with consumer encounter rate
 - Investigate approximation methods for the probability of invasion

- Move from estimating susceptible-susceptible encounter rate to susceptible-infectious encounter rate
 - Rabies virus changes behavior
 - Improve model to account for behavioral changes

Collaborators

University of Florida, SACEMA

Juliet Pulliam (Biology and EPI)

Tulane University

- Scott McKinley (Math)
- Jason Flynn (Math)

University of Texas at Austin

Steve Bellan (Biology)

Additional Data Sources and Supporters: Berkeley Etosha Anthrax Project (PI: Wayne Getz, Grant No. GM83863), Etosha Ecological Institute, Namibian Ministry of Environment and Tourism, Directorate of Parks, Wildlife and Management.

Acknowledgements

Funding

NIH/FIC-DHS/S&T
International Clinics on Infectious Disease
Dynamics and Data (ICI3D)
African Institute for Mathematical Sciences

QSE3 IGERT, National Science Foundation Grant No. 0801544

UF Emerging Pathogens Institute

