Addressing biases in HIV infectivity estimates

Steve Bellan, PhD, MPH
Center for Computational Biology and Bioinformatics
The University of Texas at Austin

MMED 2016 AIMS, Muizenberg

Treatment as Prevention (TasP)

Treatment reduces infectiousness 96%

Early transmission is unblockable by TasP

Review

HIV Treatment as Prevention: Debate and Commentary—Will Early Infection Compromise Treatment-as-Prevention Strategies?

Myron S. Cohen^{1,2,3¶}, Christopher Dye^{4¶}, Christophe Fraser^{5¶*}, William C. Miller^{2,3¶}, Kimberly A. Powers^{2,3¶*}, Brian G. Williams^{6¶*}

1/300 per heterosexual sex act

9x as infectious for 3 months

- (5) Xiridou et al. 2004
- (6) Pinkerton 2007

- (11) Prabhu et al. 2009
- (13) Cohen et al. 2013 (Williams)

based on

viral load

- (1) Jacquez et al. 1994
- (2) Pinkerton and Abramson 1996
- (3) Koopman et al. 1997
- (4) Kretzschmar & Dietz 1998
- (5) Xiridou et al. 2004
- (6) Pinkerton 2007

- (11) Prabhu et al. 2009
- (13) Cohen et al. 2013 (Williams)

- ▲ epidemic curve
- viral load

Directly measured by Rakai Community Cohort Study, Uganda

EHM

our estimate

- (1) Jacquez et al. 1994
- (2) Pinkerton and Abramson 1996
- (3) Koopman et al. 1997
- 🔔 (4) Kretzschmar & Dietz 1998
- (5) Xiridou et al. 2004
- (6) Pinkerton 2007
- (7) Hayes et al. 2006
- (8) Hollingsworth et al. 2008
- (9) Abu–Raddad et al. 2008
- (10) Salomon & Hogan 2008
- (11) Prabhu et al. 2009
- (13) Cohen et al. 2013 (Williams)
- (14) Romero–Severson et al. 2013

- epidemic curve
- viral load
- Rakai

Directly measured by Rakai Community Cohort Study, Uganda

EHM

our estimate

- (1) Jacquez et al. 1994
- (2) Pinkerton and Abramson 1996
- (3) Koopman et al. 1997
- 🔔 (4) Kretzschmar & Dietz 1998
- (5) Xiridou et al. 2004
- (6) Pinkerton 2007
- (7) Hayes et al. 2006
- (8) Hollingsworth et al. 2008
- (9) Abu-Raddad et al. 2008
- (10) Salomon & Hogan 2008
- (11) Prabhu et al. 2009
- (12) Powers et al. 2011
- (13) Cohen et al. 2013 (Williams)
- (14) Romero–Severson et al. 2013
- △ (15) Rasmussen et al. 2014

- epidemic curve
- viral load
- Rakai
- ◆ Rakai & epidemic curve
- \triangle phylogenetics

Infectivity only matters during sex with susceptible partners

Infectivity only matters during sex with susceptible partners

- ▲ (1) Jacquez et al. 1994
- (2) Pinkerton and Abramson 1996
- (3) Koopman et al. 1997
- 🔺 (4) Kretzschmar & Dietz 1998
- (5) Xiridou et al. 2004
- (6) Pinkerton 2007
- (7) Hayes et al. 2006
- (8) Hollingsworth et al. 2008
- (9) Abu-Raddad et al. 2008
- (10) Salomon & Hogan 2008
- (11) Prabhu et al. 2009
- (12) Powers et al. 2011
- (13) Cohen et al. 2013 (Williams)
- (14) Romero–Severson et al. 2013
- △ (15) Rasmussen et al. 2014

- ▲ epidemic curve
- viral load
- Rakai
- ◆ Rakai & epidemic curve
- △ phylogenetics

Variation in AF_{early} Estimates

Reassessment of HIV-1 Acute Phase Infectivity: Accounting for Heterogeneity and Study Design with Simulated Cohorts

Steve E. Bellan^{1*}, Jonathan Dushoff², Alison P. Galvani^{3,4}, Lauren Ancel Meyers^{5,6}

PLOS Medicine | DOI:10.1371/journal.pmed.1001801 March 17, 2015

Rakai estimates are substantially upwards-biased.

Identified biases by simulating transmission & study design.

How to measure acute infectivity?

- Identify recently infected individuals
- Observe rate at which they infect sexual partners
- Must be switching between partners
- Moral imperative to intervene

Rakai Community Cohort Study

30

40

20

months of follow-up

10

0

- seronegative participant
- seropositive participant
- lost to follow-up

acute infections

10/23 seroconverted

- seronegative participant
- seropositive participant
- lost to follow-up
- coupled

chronic infections

36/161 seroconverted

0 10 20 30 40 months of follow-up

7x infectious for 5 months $EHM_{acute} = 30$

Suggestive of HIGH acute infectivity

acute infections

10/23 seroconverted

- seropositive participant
- lost to follow-up
- coupled

chronic infections

36/161 seroconverted

7x infectious for 5 months $EHM_{acute} = 30$

Why re-analyze these data?

Heterogeneity in Transmission Rates

- Host genetics
- Circumcision
- Viral load
- Viral genotype
- Coital Rate
- Intercourse type (anal, dry, vaginal)
- Condom usage
- STIs
- Coinfections
- Nutrition

Bias 1: Unmodeled Heterogeneity

"Naïve" Couples.
Some are high risk

Persistently serodiscordant.
Selected to be low risk

Bias 1: Unmodeled Heterogeneity

Average risk acutely infected partners

Low risk chronically infected partners

Unmodeled heterogeneity might bias EHM_{acute} upwards

Bias 2: Inclusion Criteria

HIGH acute infectivity

Bias 2: Inclusion Criteria

HIGH acute infectivity
LOW acute infectivity

Bias 2: Inclusion Criteria

HIGH acute infectivity LOW acute infectivity

Accidentally excluded ~17 couples suggestive of low infectivity

Simulating Rakai Transmission & Observation

3. Apply published analyses to simulated data.

example relationship history

relative hazard (RH) varies by HIV stage

Heterogeneity

Simulating Rakai Transmission & Observation

- Simulate transmission in couples cohort ← process-centric
- 2. Replicate Rakai study design

3. Apply published analyses to simulated data.

Bias Analysis

Bias Analysis

Bias Analysis

Bias-Adjusted Estimates (ABC-SMC)

Estimation

What inputs consistent with Rakai data?

$$EHM_{acute} = 8.4$$

Variation in AF_{early} Estimates

Conclusions

- Acute infectivity substantially overestimated
- Early transmission less likely to undermine Treatment as Prevention
- Importance of heterogeneity

process-centric

data-centric

Bellan et al. 2015. PLOS Medicine.

Acknowledgements

- Lauren Ancel Meyers, Jonathan Dushoff, Juliet Pulliam, Carl Pearson, Alison Galvani, Manoj Gambhir, Ben Lopman, Travis Porco, Rieke van der Graaf, David Champredon, Spencer Fox, Laura Skrip
- Meyers Lab
- International Clinics on Infectious Disease Dynamics and Data (ICI3D)
- GA Tech Conference: Modeling the Spread & Control of Ebola in W Africa

