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DETERMINISTIC

STOCHASTIC

Model taxonomy

CONTINUOUS TREATMENT OF INDIVIDUALS DISCRETE TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

CONTINUOUS TIME
» Ordinary differential equations
* Partial differential equations

DISCRETE TIME /
* Difference equations

(eg, Reed-Frost type models)

CONTINUOUS TIME CONTINUOUS TIME
- Stochastic differential equations - Gillespie algorithm l
DISCRETE TIME DISCRETE TIME

- Stochastic difference equations « Chain binomial type models

(eg, Stochastic Reed-Frost models)




Why stochastic?

Small populations, extinction % % %

Noisy data
* imperfect observation

* small samples

* Environmental stochasticity
* long term variation in external drivers 451

* changes in rates, including birth and fz TR
death rates '

www.imagepermanenceinstitute.org

* Demographic stochasticity h
* comes out of having discrete individuals




Population size - NV

Continuous Time Markov Chain (CTMC)

- finite population size
- stochastic

Ordinary Differential Equation (ODE)

- large (infinite) population size
- deterministic



The Reed-Frost model

Cases/Infected
Ciy1 = St (1 — th)
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The Reed-Frost model

* The probability of getting infected by any
infectious individual is
1 — th
* The expected number of cases in the next time
unit is
Cit1 = Sy (1 — th)




Reed-Frost (Chain Binomial)

* Fixed infectious period duration
* Generations of infectious individuals don’t overlap
* Define

P probability of infection
('} casesattimet

S: susceptibles at time t




The Reed-Frost model

* For each susceptible individual, at time t:

prob. not getting infected by
any infectious individual

[ |
1 —(1-p)
| J
prob. not getting infected by a

particular infectious individual
| J

prob. of getting infected by any
infectious individual

clet g=1-—p
* So the probability of getting infected by any infectious
individualis 1 — 4




The Reed-Frost model

* The probability of getting infected by any infectious

individual is
1 — th

* The expected number of cases in the next time unit is
Cir1 = St (1 — th)
* Susceptible individuals in the next time unit

St—l—l — St _ Ct—I—l

* Recovered individuals in the next time unit
Rt_|_1 — Rt —|— Ct




The Reed-Frost model

Cit1 = 5S¢ (1 — th)

St41 = 5t — Ciqa

Ro=1.5
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The Reed-Frost model

* The full set of equations describing the deterministic population
update is:

Ciy1 = S (1 — th)
St41 =St — Ci1

Rt_|_1 — Rt ‘|‘ Ct

* If N=S5S4 C + R isthe total population size, the basic
reproductive number for this model is

Ry = (N = 1)(1 -¢q)




Building stochastic R-F model

* For each susceptible individual, at time t:

prob. not getting infected by
any infectious individual

[ |
1 —(1-p)
| J
prob. not getting infected by a

particular infectious individual
| J

prob. of getting infected by any
infectious individual

clet g=1-—1p
* So the probability of getting infected by any infectious
individualis 1 — th




Building stochastic R-F model

* For each susceptible individual, at time t:

‘(g

1—p)

prob. of not getting infected by any
infectious individual

¢«

L_J

prob. not getting infected by a
particular infectious individual




The stochastic R-F model

Putting it all together:

St

X

P(Chyy = 7) = (

) (=) (@)

number of ways to choose  prob. of x individuals prob. of S, -x individuals not
x individuals getting infected by any getting infected by any
infectious individual infectious individual

St+1 =5t — Cipa
Rt_|_1 — Rt ‘|‘ Ct



The Reed-Frost model

Stochastic: Deterministic:
S . .
B(Cr =)= () (1-4%)" ()" Covr = S0 (1- %)
St+1 =5t — Ciq1 St41 =St — Crq1
Riy1 = Ry + C; Riy1 = Ry + C;
o o Ro=1.5
Q- O
8 | 2 |
£ £ ]
Time




Chain binomial models

* Chain binomial models can also be formulated based on the
same parameters we used in the ODE models and with
overlapping generations.

* Instantaneous hazard of infection for an individual susceptible

individual is BI/N

* For a susceptible at time t, the probability of infection by time

t+ At is
pzl—e_%m

 Similarly, for an infectious individual at time t, the probability

of recovery by time ¢t + At is

r=1—e VA




Chain binomial models

The stochastic population update can then be described as

X : new infectious individuals ‘
o random variables
Y : new recovered individuals

Styat = S5t — X P(sz):(
Liynt =1+ X =Y I
Rignt =R +Y P(Y =y) = (y)fry(l — )Y




Chain binomial models

* For this model, if D is the average duration of infection, the
basic reproductive number is:

Ro = (N —1) (1 _ e_WD)

* Non-generation-based chain binomial models can be adapted
to include many variations on the natural history of infection.

* Discrete-time simulation of chain binomials is far more
computationally efficient than event-driven simulation in
continuous time.




Chain binomial simulation

while (I > @ and time < MAXTIME)

end

Calculate transition probabilities

Determine number of transitions for
each type

Update state variables
Update time




Another way to simulate
stochastic epidemics...

event-driven simulation




Stochastic SIR dynamics

Small population

© Susceptible
@ Infectious

® Recovered




Stochastic SIR dynamics

Small population

O @ © Susceptible
O O O
o ® Infectious
® O
® @) ® Recovered




Stochastic SIR dynamics

Small population

@ @ ® Susceptible
O @ O
o @ Infectious
® O
® @) ® Recovered
@)
to 1




Stochastic SIR dynamics

Small population

@ @ ® Susceptible
O @ O
o @ Infectious
® O
® @ ® Recovered
@)
to 1 %)




Stochastic SIR dynamics

Small population

@ @ ® Susceptible
O @ O
o @ Infectious
® O
® @ ® Recovered
O
to t1 %) t3




Exponential waiting times

to 1 1553 f3
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Summary: Gillespie algorithm

Assumptions:

* finite, countable populations
* well-mixed contacts
* exponential waiting times (memory-less)
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Summary: Gillespie algorithm

Assumptions:

* finite, countable populations
* well-mixed contacts
* exponential waiting times (memory-less)

Notes:

* noise (stochasticity) is introduced by the discrete nature of
individuals

* event-driven simulation
* computationally slow

 especially for large populations




Need to know

* What happened ?

* When did it happen?

Two event types:

=== Transmission

Susceptible to Infectious
@ — @

Infectious to Recovered

@ — ©

BST

(S,I,R) — (S —1,I+1,R) at rate ——

% Recovery

N

(S,I,R) — (S,I —1,R+ 1) at rate v[




Need to know

ODE analogue:
* What happened ? ds  BSI
- N
* When did it happen? df _ g5
PP = N vI
dR
-
Two event types:
Transmission
BSIT
(S,I,R) — (S — 1,1+ 1, R) at rate " S

Recovery

(S,I,R) — (S,I —1,R+ 1) at rate v €




Need to know

* What happened ? EventType

* When did it happen?  EventTime

Two event types:

Transmission

1
(S,I,R) — (S — 1,1+ 1,R) at rate 5%

Recovery

(S,I,R) — (S,I —1,R+ 1) at rate v[




The Gillespie algorithm

Two event types:

Transmission

(S,I,R) — (S — 1,1+ 1, R) at rate

Recovery

(S,I,R) — (S, I —1,R+ 1) at rate|[y] = g

Time to the next event: 7 ~ Exp <>\ — Z )\7;>

Ai
Probability the event is type i: pi = SN




Simulating the Gillespie model

while (I > @ and time < MAXTIME)
Calculate rates
Determine time to next event
Determine event type
Update state variables
Update time

end




R code example

SIR model with spillover...




Two types of transmission

Within-population transmission

S
I%I#—latrate%

Target population

Spillover introductions

I — I+ 1 at rate A

Maintenance population  Target population




R code example

SIR model with spillover

Download the associated file from ICI3D tutorial repository

Try changing:

* population size

* spillover rate

* transmission rate
* recovery rate




Sub-critical or super-critical?

Basic reproduction number for SIR model:

Ro ==

Sub-critical Super-critical
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